AD=AD4S 248 CLEMSON UNIV S C DEPT OF MATHEMATICAL SCIENCES F/6é 9/2
GENERAL CONSIDERATIONS ON THE DESIGN OF AN INTERACTIVE SYSTEM F==ETC(U)
NOV 77 R F LING NOOO14=75~C~0451

N93 NL
END
I'II;IAMIEE[\
| -/8
DoC

UNCLASSIFIED

L23 flis

MICROCOPY RESOLUTION TEST CHAR

| 1.0 e s
—— L P
NI
=

""" GENERAL CONSIDERATIONS ON THE DESIGH
" OF AN INTERACTIVE SYSTEM
FOR DATA ANALYSIS.

: ety BY Az
(1) vogerr F.JLinG
el
/. o r‘/,f,.,i’}; 1Ca i e f’t L

InviTED PAPER: ORSA/TIMS CONFERENCE_/]QJ:/?F’ “
— ATLANTA GEORGIA- 7/ I
(/1] Novemses, 1877

% Approved for public release;
Distributiocn Unlimited

SupporTED IN PART By THE OFFice OF NavaL RESEARCH
N@QQ14 — 75— C— B451| Task NR 042 - 271

Ho7 £83

ABSTRACT

Among the most important criteria in the design and

implementation of an interactive system for data analysis
are: data structure, control language and user interfacg,
system versatility, extensibility, and portability. The
design of an interactive system, viewed as a sequential

consideration of these criteria, will be discussed.

1. INTRODUCTION

The commonly accepted meaning of the term
"interactive" in "interactive systems" has gone through a
rapid evolution in the past decade. In the early days,
"interactive computing" generally meant "remote entry of
batch jobs from a terminal." This was accomplished by
modifying the source codes of batch programs for the input
of control-card information (and data) to accept input from
the terminal via a fixed sequence of prompts. Such a mode of
operation gave rise to the expression "conversational
program", although almost all of the "conversations" were
initiated by the program and not by the user, so that there
were very little genuine man-machine-interactions.

Today, the concept of interactive computing 1is
considerably more advanced and sophisticated, so is the
design and implementation of systems supporting such a mode
of computing. The terms "interactive” and "terminal-
oriented" (or timesharing) are no 1longer synonymous. I
shall use "an interactive system for data analysis" to mean
a system which is capable of supporting a high level of
efficient, man-machine interaction in data analysis, when
the analysis <calls for a sequential decision procedure by
the user, with conditional multiple branches at each step
depending on the intermediate results of the previous steps.

A well-designed interactive system will, at the very
least, enable its user to attempt one or more iterations of
data editing, plotting, transformations, or new analyses,
without re-initiating the system or re-entering the data
values. The same analysis, using batch systems or
inflexible terminal-oriented systems, will necessitate many
separate runs, each of which will duplicate some steps of
the previous analysis (e.g., re-entering the data). Besides
being flexible, versatile, and numerically dependable, a
good interactive system should provide 1its wusers with a
large variety of convenience features that are not feasible
under a batch computing enviroment. For example, there
should be internal documentations and help files so that a
user need not have a User's Manual by his side to be able to
make efficient use of the system; detectable spelling and
logical errors made by the user should be detected by the
system and facilities should be provided for the on-line
correction of such errors; and there should be other error
diagnostic and recovery features.

In this article, the design of an interactive system
will be considered as the making of a sequence of decisions
about the <characteristics of the design, where early
decisions may impose constraints on later decisions.

2

Whether a decision is made early or late in this sequence is
not related to the importance of the system characteristic
which the decision may affect. Therefore, if an early
decision should place too much constraint on some criteria
that are judged to be important, a designer may need to go
through several iterations of the decision sequence as
presented here.

Since I am much more familiar with existing
interactive systems for statistical data analysis, I shall
make references to them for illustration purposes. The
concepts and considerations discussed in this article about
the design of interactive systems are general in nature and
are neither problem-specific nor dicipline-specific.

2. GENERAL CHARACTERISTICS UNDER CONSIDERATION

2.1 Portability

A portable system 1is one which can be run on a
different computer or operating system (other than the one
on which the system was designed and implemented) with
little or no modification. A legitimate reason for
considering a non-portable system is that if the system is
designed to be run exclusively under a computer network
enviroment, then by sacrificing portability, the designer
may freely use non-standard features of the source language,
operating system, or the host computer, to make optimal use
of the available features. However, most of the existing
interactive systems are severely 1limited in portability for
the wrong reasons, the most common of which is that the
designers did not take sufficient precaution at the design
stage to make the system portable.

Recent literature on the evaluation of statistical
software (see e.g., Francis, Heiberger, and Velleman [8],
Plattsmier [14], and Velleman and Welsch [18)) generally
considered Portability to be an important and desirable
feature of any software. Therefore, a high priority should
be placed on the criterion of portability although it will
necessarily impose many constraints on other aspects of the
system design. Portability of a system from maxicomputers
to minicomputers poses many severe constraints on the design
of an interactive system (see Ling [12]) and should probably
be considered as an unrealistic goal to strive for at the
present time.

PP v

2.2 Choice of Source Language

For the source code of an interactive system, an
interpretive 1language, such as BASIC and APL, has many
technical advantages over a language that requires pre-
compilation, such as FORTRAN and PL/I. At the present time,
portability considerations will limit the choice not only to
BASIC and FORTRAN, but to some simple dialects of these
languages, such as ANSI FORTRAN or a subset of the features
in BASIC (see e.g., Isaacs [10]).

2.3 Choice of Data Structure and Program Structure

Once a programming language 1is decided upon, the
designer should then choose a data structure and the
corresponding program structure, taking into consideration
the available core for the system and whether the system is
to be general purpose or special purpose.

Decisions on the data structure include choosing the
types of data the system will admit (scalers, vectors,
matrices, arrays; binary-valued, integer-valued, real-
valued, complex-valued, and categorical or non-numeric
variables) as well as how they are stored, retrieved, and
interfaced (fix-sized storage lacations for each type of
data, variable-sized 1locations, or user-defined data
structure with storage locations dynamically allocated).
For example, for statistical data analysis, a commonly
employed scheme is to allocate the bulk of the high- speed
memory to a primary rectangular array of data values,
classified as cases by variables. This array, together with
other variables, arrays, and system parameters are stored in
COMMON areas for passing data and system information among
its subprograms. Such is the basic structure of interactive
systems IDA [(11], MIDAS (7], miniBMD (4], SIPS [9], and
others. The SPEAKEASY system [17] (not designed to be
portable) has perhaps the most general and flexible data
structure of all interactive systems to date. When a user
defines a variable under this system, he defines the type
(real, complex, vector, matrix, etc.) as well as the size,
and the system dynamically allocates storage 1locations for
the variable, so that wusers using small datasets require
less space than wusers wusing 1large datasets, which is
generally not the case in other systems.

The most important considerations concerning the
program structure of an interactive system are the degree of
modularity of the system, the overlay structure of
subprograms and wutility programs (in FORTRAN) or the
CHAINING or program-communication structure (in BASIC), and
the isolation of machine-dependent codes (if they cannot be
avoided) to a module of the system. Finally, the system
should be designed and implemented in a way which makes

4

allowances for system expansion as well as extensions by its
users who may wish to add modules of their own to the
system. :

3. USER INTERFACE

The aspects of user interface discussed in this
Section are the chief distinguishing features of interactive
systems from non-interactive ones. They pose the most
challenging problems for the system designer and in my
opinion, existing systems handle such problems with very
limited degrees of success.

3.1 Control Language

A control 1language designed specifically for the
novice in computing or a novice in the areas of application
is 1likely to be too clumsy for the expert users.
Conversely, a control 1language suitable for experts is
likely to be too difficult for novices or new users. It is
technically feasible to implement a flexible control
language suitable to users of both extremes, although no
existing system seems to meet the challenge in a completely
satisfactory manner.

Consider some examples of how regression runs are
specified in various existing statistical packages.

D - .. - - - - -

I I
I L1 Regress IR (11,931 1
I (or Regr; System prompts for additional I
I information - long prompts for users I
I working in beginner's mode and short I
I prompts for expert's mode) I
IL2: Regress var=5;1-3 MIDAS [6,7] I
3 k3 Regress,5,1-=3 SIPS (1,91 1
I LY Regress y on (x1,x2,x3) DATATRAN (3] I
I L5S: Multiregression(x1,x2,x3,y:r) SPEAKEASY [17] I
£ LG Regress y in c¢5 using 3 pred. in c1,c2,c3 &
I MINITAB [15] I
n S A Regress c¢5 on 3 variables c¢1 c2 c¢3 I
I MINITAB II [16] I
I B8 Regress y on (principal-component I
I (log(x1),log(x2),log(x3))) DATATRAN [2] I
IL9: eval cpm:=crossp(dtmx) I
I eval cfs: rggs(cpm) print coefs cs (5] 1
I (where dtmx is the data matrix) I
I I

e

5

L1 has the advantage that the user has to remember
only one control word (command word or keyword) for each
procedure, and the system prompts for the rest. It's
principal disadvantage is that it takes several commands and
many prompt exchanges to accomplish the same task as that
specified in a single line in LS8.

L2 and L3 are efficient. They allow a wuser to
specify a task with a minimal amount of typing. So are L4
and L5, to a lesser degree. However, all of them require
the user to know the exact syntax, grammar, and where the
commas, colons, simicolons and other symbols go. What if a
user makes a typing mistake or syntatic error? The same
question applies to L6 through L9 as well. None of the
systems (L2-L9) has a satisfactory error recovery scheme.

In my opinion, an ideal control language should have
L1 as the basic (or default) structure, but the user may
override the prompting structure by specifying a task in
some form similar to L2-L9, and if the user makes a syntatic
error (implying he is not as familiar with the control
language as he thought he was), the system reverts to the
prompting mode automatically (which he may again override if
he so chooses). This form of structure seems to be the most
sensible way to design a control language. It does not make
the unreasonable assumptions that a user familiar with some
procedures of a system is equally familiar with other
procedures; that a novice remains a novice; or that an
expert does not make typing and syntatic errors.

L6 and L7 resemble a "natural" language (or ordinary
English). They are definitely preferable to languages using
cryptic abbreviations and unnatural syntaxes such as L9.
However, the subtle trap is that what appears perfectly
"natural” (once you are familiar with the Kkeywords and the
order of the parameter values) may have many equally
"natural" equivalent expressions that the control language
processor does not recognize. A case 1in point 1is the
difference between the two natural 1languages L6 and L7 in
MINITAB and MINITAB 1II respectively. Both are natural
expressions for the same task but they are not compatible.

Of the 1languages illustrated here, DATATRAN admits
the most general (and natural) expressions. The Consistent
System (CS) 1is also very flexible in its control language
L9. Its cryptic grammar and vocabulary are its chief
drawbacks.

3.2 Internal Documentation and Help Files
Ideally, all documentation about an interactive

system should be accessible by the user from the terminal
while he 1is operating within the system. From the system

6

designer's point of view, such an implementation would be
tedious to accomplish but it should present no technical
difficulties. Frequently accessed documentation can be
placed in core while 1lengthy or infrequently accessed
documentation can be stored on disc or other secondary
storage devices. Alternatively, documentations may be
segmented as overlayed subprograms which would not occupy
any active partition space until they are called. A User's
Manual should be an optional or auxiliary feature of an
interactive system, rather than a necessity.

In practice, the system that comes closest to this
ideal 1is the SPEAKEASY system [17] which contains the
equivalent of several hundred pages of printed
documentation, hierarchically organized and retrievable
through the use of the keyword HELP. 1IDA [11] has a very
different internal documentation structure. Some
documentations about the system are obtainable by executing
commands COMM (for a list of the valid command words) and
INFO (for general information about the system and various
categories of commands). Other explanations can be obtained
by the user as options to answering specific prompts. Most
of the other existing interactive systems have very limited
amounts of internal documentation.

3.3 Error Detection and Recovery

- The simplest form of error detection is the insertion
of source codes to check the user input for spelling and
syntatic errors, and to produce appropriate diagnostic
messages and provide on-line correction facilities for their
remedy. A reasonable strategy is to assume that some user
will make an error at some time at each place an error could
occur, and have the system make checks for all possible
errors. The implementation of this strategy entails a fair
amount of effort of the programmer and a small additional
amount of execution time, but saves the user a great deal of
worrying about abnormal exits (or getting "bombed" out of
the system).

Error detection need not, and probably should not, be
limited to spelling and syntatic errors. Users often make
logical errors that are easily detectable. For example,
they may specify a logorithmic transformation on a variable
which contains negative values; specify the same variable
as two different independent variables in a regression
problem (which would have led to the inversion of a singular
matrix, if wundetected); or many other syntatically correct
specifications that would have led to execution errors that
may be fatal to the interactive session. These errors
should be detected before execution. On a more
sophisticated 1level of error detection, an interactive
system could be designed to detect "“probable" errors of

application that are neither syntatic nor execution errors.
For example, a wuser may fit a linear functional model to a
set of data that are nonlinearly related; or there may be
extreme outliers in the fitted model; or a user may ask to
store some results in locations that would erase some of his
data; and so on. In each of such instances, the condition
of probable error can be detected and the user can be WARNED
at the time of detection, so that he may either continue
with the task as specified or change his task specification.
The system IDA has a very elaborate subsystem of error
detection codes that will detect all of the above types
errors. As a result, a large portion of the source codes in
IDA are error-detection codes. There 1is almost no limit to
the amount of error-detection codes that can be wusefully
incorporated into an interactive system. The major
practical constraints are the 1limited amount of human
resources in writing such codes (as opposed to writing codes
that carry higher priorities 1in developing a system) and
possibly space limitations.

Error-detection codes are themselves of little value
to the user wunless they are accompanied by informative
diagnostic messages and codes for easy recovery or change of
tasks. Therefore, such codes are implied as necessary co-
requisites of error-detection codes.

A different form of error recovery pertains to
abnormal exits from the interactive system into the
Operating System of the machine. This could occur when the
user encountered execution errors (caused by machine
arithmetic overflows or underflows) as the result of an
undetected error in task-specification; or it could occur as
the result of an inadvertent interrupt of the system by the
user. In either case, there should be ways of recapturing
the interactive session without having to reinitiate the
entire session. Such a form of recovery is typically easier
to accomplish when the system is coded in BASIC or some
other interpretive language than in FORTRAN. In the former
case, execution could easily be resumed at a specific line
number of the source code near which the abnormal interrupt
took place. In a FORTRAN enviroment, there is generally no
easy way to get back into the system once execution is
terminated, normally or abnormally. The most efficient way
of handling error recovery of this type is to have special
codes to intercept the pending interrupt (via machine
language or assembler language routines) before it reaches
the Operating System. However, such routines will make the
interactive system machine-dependent as well as Operating-
System-dependent and hence nonportable. For portable
systems, a partial recovery 1is possible by periodically
dumping the status of the system onto some temporary file,
which can be used to bring the system up to the point of the
dump, should there be a machine crash or some fatal
execution error. IDA has such capabilities in the commands

8

HOLD and PICK. These commands can also be used to save the
computation status at the end of one session, to be resumed
from that point in a subsequent session, possibly at a later
date, without havings to retrace any previous computations.

4, IMPLEMENTATION CONSIDERATIONS

The 1items considered 1in this Section are design
decisions relating to certain details in the implementation
of software systems. Many of these decisions are not
limited to the design of 1interactive systems, though some
are.

4,1 Versatile Output Format

Batch systems generally have fixed output format for
computational results because the standard printer page has
66 lines per page and can accommodate 132 printed characters
per line (plus one carriage-control character). Interactive
systems, on the other hand, are run on a large variety of
terminals with different 1line widths and page 1lengths,
ranging from the standard printer page to the short-width
and short-length CRT screen. Attractively formatted output
for one page-size is either unattractive or unsuitable for a
different page-size, especially for plots. Consequently, it
is highly desirable to write the printing and plotting
routines of an interactive system with a varible page-size
parameter which can be specified by the user, and have the
system provide different formats for the same output
depending on the value of the page-size parameter. It is
also desirable to have the option for a user to specify the
number of significant digits or decimal places in the
printed output.

4.2 Versatile Plotting Options

Large size or full-page plots (even on small-sized
pages) can take a considerable amount of time on a slow 10
cps teletypewriter or terminal. Often a much smaller-sized
plot will contain sufficient detail for a particular
problem. Other times, a user may wish to scan a moderate
number of different small plots and wuse the 1large-sized
plots of the same for only a few cases that require greater
resolutions or details. IDA, for example, has three
different sizes for scatter plots (large, small, and mini).
Each of these plots requires approximately 80 sec., 30 sec.,
and 10 sec., respectively, to print on a 30 cps terminal.
The advantage of having the option for a mini plot on a low-
speed terminal seems obvious.

9

Other plotting versatility considerations include a
flexible choice. of scales and labels for each plot, and the
incorporation of interface facilities for selected plots on
various standard plotting equipments such as the CALCOMP pen
plotter and the Tektronics CRT graphic unit.

4.3 Optional Background Output

Since an increasing number of interactive system
users are computing on CRT terminals (which can be operated
in much higher output speeds and at a 1lower cost than
hardcopy terminals), provisions should be made for users to
selectively save the output of part or all of the terminal
session onto a data file in order to obtain copies of these
results on a hardcopy printing device (such as a standard
high~speed printer) at the end of a session. Facilities for
such a mode of background output can be useful even for the
user whose foreground output is on a hardcopy terminal, when
multiple copies of selected portions of the results are
desired.

4.4 Other Considerations

There are many other criteria and options that must
be taken into consideration in the design of a computational
system, e.g., the numerical accuracy and computational
efficiency of the algorithms, the efficiency of programming
codes; whether users have the option to choose the degree
of numerical accuracy in the computations, whether the
results are guaranteed to be accurate to the number of
digits printed, and so onl's However, since these
considerations apply to interactive and non-interactive
systems alike and they pertain to the finer details of such
systems, they will not be elaborated here.

5. CONCLUDING REMARKS

Once an interactive system has been written, even
with provisions for modifications and extensions, it is
without exception very difficult ¢to alter the basic
structure and characteristics of the system. Therefore , if
an interactive data analysis system 1is contemplated, the
designer must pay close attention to all of the potential
features in the system, whether some of those features are
intended to be included in the initial implementation of the
system or not. In this article, the design process 1is
presented as a sequential decision process. Most of the
features discussed are considered by this author to be

10

either necessary or highly desirable features in a good
interactive system. They reflect the author's extraction

and extrapolation of features in existing interactive
systems.

The criteria implied by, and derivable from, the
discussion of these features are consistent with the
generally accepted criteria in the evaluation of interactive
systems and therefore can be used as such. However, the
purpose of the article is to give an account of the general
considerations in the design of an interactive system and to
focus attention on certain areas where there seem to be much
room for improvements 1in the existing 1interactive data
analysis systems.

(1]

(21

(3]

(4]

(51

(61

(7]

(8]

(91

11

6. REFERENCES

Avery, K.R. and Avery, C.A., "Design and development
of an interactive statistical system (SIPS),"
Proceedings of Computer Science and Statistics:

3dth Annual symposium on the Interface, Health
Sciences Computing Facility, UCLA, 1975, 49-55.

’

Brode, J., "Generalizing the function call to
statistical routines-an application from the
DATATRAN language," Proceedings of the Computer
Science and Statistics: 10th Annual Symposium on
the Interface, National Bureau of Standards,
Gaithersberg, Maryland, 1977.

Brode, J., Stamen, J., and Wallace, R., "The DATATRAN
language," Proceedings oif the American
Statistical Association, Statistical Computing
Section, 1976, 126-9.

Buchness, RS and Engleman, B, "MiniBMD: A
minicomputer statistical system," Proceedings of
the Computer Science and Statistics: 10th Annual
Symposium on the Interface, National Bureau of
Standards, Gaithersberg, Maryland, 1977.

Dawson, R. and Klensin, J., "Data analysis in the
Consistent System," unpublished manuscript,
M.I.T., 1976.

Fox, D.J., "Some considerations 1in designing an
interactive data analysis system," Proceedings of
the Computer Science and Statistics: 8th Annual
Symposium on_ the Interface, Health Sciences
Computing Facility, UCLA, 1975, 61-5.

Fox, D.J. and Guire, K.E., Documentation for MIDAS,
revised 2nd edition, Statistical Research
Laboratory, University of Michigan, August, 1974.

Francis, I., Heiberger, R.M., and Velleman, P.,
"Criteria in the evaluation of statistical
program packages," American Statistician 29

(February 1975), 52-5.

Guthrie, D., Avery, C., and Avery, K., oStatistical
Interactive Programming System (SIPS), User's
Reference Manual. Oregon State University
Bookstore, Corvallis, Oregon, 1974.

(10]

(111

£12]

(131

[14]

(15]

(161

(171

(18]

1

Tsaaes, G.L., "Interdialect translatability of the
BASIC programming language," ACT Technical
Bulletin No. 11, The American College Testing
Program, Iowa City, Iowa, 1972.

Ling, R.F., "IDA (Interactive Data Analysis),"
Department of Mathematical Sciences Technical
Report No. 237, Clemson University, 1976.

Ling, R.F., "Constraints in the design and
implementation of interactive statistical systems
for minicomputers," Proceedings of the Computer
Science and Statistics: 10th Annual Symposium on

- the Interface, National -Bureau of Standards,
Gaithersberg, Maryland, 1977.

Ling, R.F. and Reberts, H.¥V., "1DA and user
interface," Proceedings of the Computer Science
and Statistics: 8th Annual Symposium on the

Interface, Health Sciences Computing Facility,
UCLA, 1975, 91-4.

Plattsmier, Ris'Bs "Criteria for evaluation of
interactive statistical programs and packages,"
Proceedings of the Computer Science and
Statistics: 10th Annual Symposium on the
Interface, National Bureau of Standards,
Gaithersberg, Maryland, 1977.

Ryan, T.A., Joiner, B.L., and Ryan, B.F., MINITAB
Handbook. North Scituate: Duxbury Press, 1976.

Ryan, T.k., Joiner, B.L., sad Ryan, B.F., "Minitad 1II,
1977," unpublished manuscript, 1977.

SPEAKEASY-3 Reference Manual Level Lambda IBM 0S/VS
Version, compiled by Cohen, S. and Pieper, S.C.,
Argonne National Laboratories, Argonne, Illinois,

1976.

Velleman, P. and Welsch, R.E., "Some -evaluation
criteria for interactive statistical program
packages," Proceedings of the American

Statistical Association, Statistical Computing

Section, 1975, 10-2.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T REPORT NUMBER 7. GOVT ACCESSION NO.| 3. RECIRIENT'S CATALOG NUMBER
N 93 v
4. TITLE (and Subtitle) ; S. TYPE OF REPORT & PERIOD COVERED

. ; . Technical Report
General Considerations on the Design of an P

Interactive System for Data Analysis §. PERFORMING ORG. REPORT NUMBER
TR 269
7. AUTHOR(s) %. CONTRACT OR GRANT NUMBER(s)
Robert F. Ling NOC014-75-C-0451"
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK

: X AREA & WORK UNIT NUMBERS
Clemson University

Dept. of Mathematical Sciences e NR 042-271
Clemson, South Carolina 29631
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research ”0”/,77

Code 436 13. NUMBER OF PAGES

Arlington, Va. 22217 12
4. MONITORING AGENCY NAME & ADORESS(/! ditfferent from Controlling Oftice) 1S. SECURITY CLASS. (of thie report)

Unclassified
15a. DECL ASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Invited paper presented at the TIMS/ORSA Annual Meeting
in Atlanta, Georgia, November 8, 1977.

19. KEY WORDS (Continue on reverse eide if necessary and identily dy block number)

Design of computer software; Interactive system for data analysis.

20.\@.81’!“‘.1’ (Continue on reverse eide If necesssry and identify by block number)
|

Among the most important criteria in the design and implementation of an
interactive system for data analysis are: data structure, control language,
user interface, system versatility, extensibility, and portability. The
design of an interactive system, viewed as a sequential consideration of
these criteria, is discussed.;:

DD , 57", 1473 eoimion oF 1 Nov 63 1s omsoLETE

S/N 0102-014- 6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dara Entered)

